ar X iv : 0 90 1 . 03 52 v 2 [ m at h . A P ] 1 3 Fe b 20 09 Compressible flows with a density - dependent viscosity coefficient ∗

نویسندگان

  • Ting Zhang
  • Daoyuan Fang
چکیده

We prove the global existence of weak solutions for the 2-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient (λ = λ(ρ)). Initial data and solutions are small in energy-norm with nonnegative densities having arbitrarily large sup-norm. Then, we show that if there is a vacuum domain at the initial time, then the vacuum domain will retain for all time, and vanishes as time goes to infinity. At last, we show that the condition of μ =constant will induce a singularity of the system at vacuum. Thus, the viscosity coefficient μ plays a key role in the Navier-Stokes equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 2 . 17 29 v 1 [ m at h . N T ] 1 0 Fe b 20 09 ON THE DIMENSION OF AG TRACE CODES

We determine the dimension of certain q-ary algebraic-geometric codes, extending previous results of Van Der Vlugt for p-ary algebraic-geometric trace codes.

متن کامل

ar X iv : 0 90 2 . 28 05 v 1 [ m at h . D G ] 1 7 Fe b 20 09 Computing the density of Ricci - solitons on CP 2 ♯ 2 CP 2

This is a short note explaining how one can compute the Gaussian density of the Kähler-Ricci soliton and the conformally Kähler, Einstein metric on the two point blow-up of the complex projective plane.

متن کامل

ar X iv : 0 90 2 . 03 00 v 2 [ he p - th ] 1 3 Fe b 20 09 Calculable membrane theory

The key to membrane theory is to enlarge the diffeomorphism group until 4D gravity becomes almost topological. Just one ghost survives and its central charges can cancel against matter. A simple bosonic membrane emerges, but its flat D = 28 target space is unstable. Adding supersym-metry ought to give calculable (2,2) membranes in 12 target dimensions, but (2,1) membranes won't work.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009